
Extending Jini with Decentralized Trust Management

Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka Nikander
Helsinki University of Technology

Konemiehentie 2
FIN-02015 HUT, Finland

{pasi.eronen, johannes.lehtinen, jukka.zitting, pekka.nikander}@hut.fi
rk

n-
Jini
orm

st
at
y

ve
he

ch

ry
he

e
the
n a
of
al

ur

se
fi-
L
rce.
tion
y
the

-
ed
re-
au-
, she
the
Abstract-Decentralized Trust Management, originally intro-
duced by the PolicyMaker and SDSI prototypes, and currently
promoted at least by the KeyNote2, SPKI, and TeSSA develop-
ment efforts, provides a means of distributed authorization that
seems to be especially suitable for distributed object systems and
agent based systems. In this paper we introduce the SIESTA
project, which studies how to integrate the ideas of decentralized
trust management to the Jini environment. The focus of the func-
tionality is on the use of SPKI certificates to secure Jini services.
Controlling untrusted code is also an important issue because to
use a Jini service one has to rely on proxy code loaded from the
network. The resulting system allows decentralized authoriza-
tion and trust management of Jini-based services and applica-
tions.

I. INTRODUCTION

Traditionally, security has been based on identity authenti-
cation and locally stored access control lists even in distrib-
uted systems. However, this approach has a number of
drawbacks, including, for example, the problem of protecting
remote access control list management operations. An alterna-
tive to the traditional approach is the use of authorization cer-
tificates, as suggested, for example, in [1], [2], [3]. The HUT
TeSSA project [4] has further refined these ideas in the con-
text of object systems, and shown how these techniques can
be applied to Java security in a distributed setting [5], [6], [7].

The basic Java facilities for secure, downloadable code are
central in Sun’s Jini technology [8]. Jini allows devices in a
network to find each other and form communities (that is,
groups of devices sharing some servsices). Jini services are
accessed via proxies, which are downloaded from the network
on demand.

In this paper, we introduce the SIESTA project, which is
building a prototype of a secure, group aware distributed Per-
sonal Information Management (PIM) application on the top
of Jini. The central component of this project, the Jini security
library, is a generic authorization framework for Jini-based
applications, as is explained in detail in this paper. The author-
ization framework provides facilities that let users to author-
ize pieces of code loaded from the network to perform certain
operations, that also allow users themselves to be authorized
to use services offered by other devices, and that make it pos-
sible for these authorizations to be dynamically delegated.

Specifically, the developed Jini authorization framewo
addresses the following issues.

• The framework allows both security-aware and security-u
aware applications to be authorized to have access to
services. The access credentials are represented in the f
of authorization certificates.

• It provides an interface for Jini service proxies to reque
delegated authorization from their hosting application. Th
is, a Jini service proxy downloaded by an application ma
ask for a certain permission that the application may ha
or have not, and if the application has the permission, t
proxy may get it too.

• Security-aware applications may restrict when and whi
authorizations are delegated to which proxies.

• The framework takes care of obtaining all the necessa
certificates when verifying access to a Jini service. T
service need not implement this logic itself.

The rest of this paper is organized as follows. In Sect. II w
describe the traditional ACL based access control, show
benefits of authorization certificate based access control i
distributed setting, and discuss authorization in the context
Jini. Sect. III describes our changes to the Jini operation
model. Next, in Sect. IV, we describe the architecture of o
solution. Finally, Sect. V contains our initial conclusions.

II. A CCESS CONTROL

The traditional way to implement access control is to u
access control lists (ACLs). A resource (for example, a con
dential web page) has an ACL associated with it. The AC
contains the names of users allowed to access the resou
When the user tries to access the resource, user identifica
is performed, for example, with passwords or public-ke
cryptography. The service then checks the user name with
ACL, and either grants or denies access.

Authorization certificates provide a totally different ap
proach to access control. Instead of storing a list of authoriz
users with each resource, we store the list of authorized
sources with each user. The user has a number of “tickets”
thorizing some action, and when she accesses the service
hands over the relevant ticket. The service then checks if
ticket is valid.



nd
ity
nd
nt

to

an

ice
e.
he
are

to
the
For
on
ing
ive
cal-
and

o
nt.
u-
e
se-
it
The tickets used are authorization certificates; in our case,
Simple Public Key Infrastructure (SPKI) certificates, as speci-
fied in RFC 2693 [2]. The main benefit of using authorization
certificates instead of ACL is delegation. That is, an user who
is authorized to use some resource can authorize somebody
else to use the resource, if delegation is permitted by the serv-
ice owner.

A. SPKI certificates

An SPKI certificate has five security related attributes:is-
suer, subject, delegation, tag,and validity, often represented
as a 5-tuple (I, S, D, T, V). Issueris the public key of the prin-
cipal who issued the certificate, and the whole certificate is
signed by the corresponding secret key to establish authentic-
ity. Subjectis the public key of the recipient of the permis-
sions.Delegationis a boolean flag telling whether the subject
may authorize other users or not.Tagis a service-specific field
which describes the permissions included in the certificate,
andvalidity describes the conditions under which the certifi-
cate is valid (for example, the time of expiration).

When using authorization certificates, the permissions are
typically granted by issuing the administrator of a service a
certificate which gives a permission to delegate any service-
related permissions. The administrator may then delegate sub-
sets of the permissions by issuing new authorization certifi-
cates. The new certificates may or may not include the
delegation permission. Each certificate is signed by the issuer
so that the the authenticity of the certificate can be confirmed.
The user is authorized by a certificate chain beginning from
the first issuer, i.e., the service, and ending to the last grantee
or subject, the user. The service checks whether the chain is
valid and whether the certificate chain as a whole implies the
permission to perform the requested operation.Fig. 1 illus-
trates the concept of certificate chain.

B. Using authorization in Jini

One of our goals was to study how to add authorization a
delegation to Jini. Therefore, we implemented a secur
framework providing authorization to Jini based services a
applications. Fig. 2, below, illustrates the most importa
component related concepts and their associations.

• Applications and proxies are Java programs.

• Java programs and services are programs.

• Persons and programs are principals.

• A principal authorizes another principal by a certificate
perform an operation.

• A person runs a Java program using a JVM.

• An application uses a service through a proxy to perform
operation.

The users can receive authorization to use some Jini serv
(for example, a printer) from the administrator of the servic
The authorization is issued as a SPKI certificate written to t
user’s key. The certificates and the user’s private keys
stored in her computer.

The users can delegate a subset of their authorizations
trusted local applications. The authorizations delegated to
application depends on how the user trusts an application.
example, the user might trust a freeware drawing applicati
to print correctly and she would delegate the correspond
permission to the application. However, the user does not g
the drawing application the permission to access personal
endar files, because the application does not really need it,
it just might contain code that misbehaves.

The Jini security library provides a way for applications t
use these authorizations with a service in Jini environme
One of the problems to be solved is how to prove these a
thorizations through the Jini proxy which is loaded from th
network and can not be fully trusted by the user. The user’s
cret key is required to prove the user’s authorizations but
must not be given to the proxy.

Fig. 1. Basic authorization certificate loop, represented as 5-tuples

issuer

subject

(Self, PAS, may delegate, access
to “Service”, time constraint)

Server’s

Key: PAS

policy admin
User’s

Key: PAU

policy admin

Key: Self
Service

Key: U
User U

(PAS,PAU, may delegate, limited
access to “Service”, forever)

(PAU, U, no delegation, access
to “Service”, time constraint)

authentication
protocol

Service

JVM

Person

Principal

Program

Java program

Application Operation

Certificate

Proxy

using runs

who

who

whom

authorizes
using

what

with help of

to perform
to perform

uses

who

what

Fig. 2. The conceptual model of Jini authorization



cer-
ing
on

e
ch
ey.
y

ive
the
tion
be
st

so
se
os-
is-

ri-
u-

-

as
te

it

-

ity
nd
od-

r
he
rk,
es
xy
III. CHANGES TO THEJINI OPERATION MODEL

The default behaviour of a Jini application and a Jini serv-
ice is shown in Fig. 3, above, where a methoddoIt of the
service is invoked by the application. Before the invocation is
possible, a number of activities must take place.

1. The service registers its proxy with the lookup service.

2. The application, wishing to use the service, queries the
lookup service for a service providing doIt.

3. The proxy is downloaded to the client.

4. The application calls some method on the proxy object, re-
questing it to do whatever the service does.

5. The proxy sends the request to the service.

With our authorization certificates, the picture is a little bit
different (Fig. 4, below). In our example, the application is not
security-aware.

As prerequisites, the service has authorized the administra-
tor to use it, and the administrator has authorized the user. The
user’s key and the certificate proving the permission are stored
in the JVM. When accessing the service, the four first steps
are identical with the default Jini behaviour. Thereafter come
the differences:

5. When the proxy receives a request, it knows that some au-
thorization is needed. It asks the Jini Security library for
this.

6. The Jini Security library first checks if the application is al-
lowed to access this kind of service, and if it is, writes a
short-lived certificate from the user’s key to the proxy’s
temporary key.

7. The proxy contacts the service, sends all the necessary
tificates and proves that it actually has the correspond
private key. The service checks this, and if the authorizati
is ok, allows access.

It is not necessary for the proxy to know its own privat
key. The framework gives the proxy a handle to the key, whi
allows signing data but does not reveal the actual private k
This way the key can be “revoked” immediately by simpl
setting a flag in the handle object.

Why does the proxy need a private key then? We could g
it an object capable of proving the user’s secret key and
necessary certificates. The problem is that as the authoriza
certificates are considered public, the proxy would then
able to prove any authorization delegated to the user if it ju
obtains the corresponding certificate. The proxy might al
use the key to fake identities. In addition to preventing the
kinds of threats, the use of a temporary key makes it also p
sible for the user to delegate a more restricted set of perm
sions to an application and further to a proxy.

IV. I MPLEMENTATION ARCHITECTURE

Our implementation is responsible for proving user autho
zations to service, authenticating proxies and verifying a
thorizations. It consists of the following packages.

• siesta.security.core package contains the most im
portant classes, such asProxySecurityManager , which
is responsible for proxy security.

• siesta.security.spki contains functions for access-
ing, encoding and decoding SPKI certificates, as well
verifying certificate signatures. The implementation is qui
generic.

• siesta.security.authorization defines the SI-
ESTA-specific semantics for SPKI certificates. That is,
definesa meaningfor authorization tags andan implemen-
tation for processing them.

• siesta.security.repository contains a simple lo-
cal certificate repository for storing authorization certifi
cates, andCertificateGatherer which tries to find a
complete certificate chain when proving authorization.

A. Functionality

The most important changes to the basic Jini functional
are included in the service registration, proxy download, a
service access functions. The security-related functional m
ifications are explained next.

1)  Registering a service:In Jini, each server must registe
the services it provides to a lookup service. This makes t
services available for clients. To use the security framewo
the service must know its own key pair, its service certificat
(explained below), and the key used for signing the the pro
code. Service registration is performed as follows.

Client JVM

Application

ServiceProxy

Jini Lookup Service

ServiceProxy

Service

1. Register

2. Lookup

3.
 D

ow
nlo

ad

4. doIt

5. doIt

Fig. 3. Default behaviour in Jini Service lookup

Client JVM

Application

ServiceProxy

Jini Lookup Service

ServiceProxy

Service

1. Register

2. Lookup

3.
 D

ow
nlo

ad

4. doIt

7. doIt

Jini Security

5. GetAuth

6. Authorize

Fig. 4. Extending Jini service lookup with Authorization



-
by

ice,
ing

The

e-

e

l-
ng
u-
v-
m
use
ve
rm
e-

li-
d

tti

ust
y

d

-

e-
1. The service initializes a proxy as normally in Jini.

2. The service signs the proxy usingProxySigner . The
ProxySigner stores to the proxy a number of items, in-
cluding the service public key, the service certificates, a
computed code certificate, and a computed data certificate.
The code and data certificates are explained in detail in Ap-
pendix A.

3. The service sends the proxy to the lookup service as nor-
mally in Jini, but now the proxy contains a bunch of secu-
rity related information.

2)  Retrieving a service proxy:In order to access a service,
an application must retrieve a proxy from a lookup service.
This happens as usually in Jini. However, before the proxy
can access any security functions, it has to register itself with
ProxySecurityManager .

1. TheProxySecurityManager checks that is was really
invoked by the proxy.

2. If the check is passed, theProxySecurityManager cre-
ates a newProxySecurityAssociation object and a
temporary proxy key, and callsProxyVerifier.ver-
ify .

3. TheProxyVerifier asks the proxy to calculate a mes-
sage digest of its data, usingSignedProxy interface
methodupdateDataDigest , and verifies the data signa-
ture, the code signature and the service certificates.

4. If the verification is passed, theProxyVerifier stores
service public key and service information to aProxySe-
curityAssociation . These allow the proxy to create
credentials for accessing the service.

Since our initial application is a personal calendar, the con-
cept of the service “owner”, which has a public key distinct
from the service key, is important. The service certificates are
written by the owner to the service key, and contain the name
of the Java interface implemented by the service (for example,
siesta.pim.calendar.CalendarService ). These
certificates, together with conventional identity certificates
(binding a human-readable name to a public key), can be used
by an application to securely bind the owner’s name and a
specific proxy object together (for example, when the name is
shown to the user).

3)  Accessing the service:When the application wants to
use the service, it invokes a service method on the proxy.

1. The proxy calls ProxySecurityManager.get-
Authorization . The ProxySecurityManager finds
the corresponding proxy registration, checks that the tag
has the correct service key and callsApplicationAc-
cessController to check local application authoriza-
tion.

2. The ApplicationAccessController inspects the
Java call stack, and checks that the calling application is au-
thorized to access this kind of service.

3. TheProxySecurityManager creates a short-lived cer-
tificate (from the user key to the proxy key). This certifi
cate, together with other relevant certificates returned
CertificateGatherer , is then given to the proxy.

4. The proxy opens secure communication channel to serv
authenticates the service key, and authenticates itself us
the proxy key.

5. The proxy sends the service request and certificates.
service creates a newChainVerifier object, creates a
tag corresponding to the service request, and callsChain-
Verifier  to check it.

6. The ChainVerifier checks the individual certificates,
and for each certificate chain, checks if it implies the r
quested tag.

7. Finally, if the authorization is OK, the service performs th
requested action.

V. CONCLUSIONS

In this paper, we have briefly outlined how to add decentra
ized authorization and trust management to Jini by usi
strong cryptography and authorization certificates. In partic
lar, we have developed a Jini security library that allows ser
ice proxies to dynamically request credentials that allow the
to send requests to the corresponding services. In order to
such credentials, the application hosting the proxy must ha
appropriate administratively assigned permissions in the fo
of SPKI certificate chains. The resulting system allows fin
grained access control in distributed Jini environments.

We have implemented the first prototype version of the
brary, and our next goal is to finish the implementation an
make it publicly available.

ACKNOWLEDGMENTS

Special thanks go to the rest of the SIESTA team: An
Mannisto, Petra Pietiläinen, and Satu Virtanen.

REFERENCES

[1] Matt Blaze, Joan Feigenbaum, and Jack Lacy, “Decentralized Tr
Management”, InProceedings of the 1996 IEEE Computer Societ
Symposium on Research in Security and Privacy, Oakland, CA, May
1996.

[2] Carl Ellison et al.,SPKI Certificate Theory,RFC 2693, September
1999.

[3] Ronald Rivest and Butler Lampson, “SDSI - A Simple Distribute
Security Infrastructure”,Proceedings of the 1996 Usenix Security
Symposium, 1996.

[4] Sanna Liimatainen et al.,Telecommunications Software Security Ar
chitecture, Helsinki University of Technology, http://
www.tcm.hut.fi/Research/TeSSA

[5] Pekka Nikander and Jonna Partanen, Distributed Policy Manag
ment for Java 1.2, inProceedings of Network and Distributed System
Security Symposium,4-5 February 1999, San Diego, CA.

[6] Pekka Nikander,An Architecture for Authorization and Delegation
in Distributed Object-Oriented Agent Systems,PhD Thesis, Helsinki
University of Technology, March 1999.



r of

.
ca-

g-

n’t
ial

o
rd
zed
in
b-

e
on

al-

ts
d in
i-
he
es-
, a

ng
[7] Jonna Partanen,Using SPKI certificates for Access Control in Java
1.2, Master’s Thesis, Helsinki University of Technology, August
1998.

[8] Jim Waldo, The Jini Architecture for Network-Centric Computing,
Communications of the ACM,Vol. 42, No. 7, July 1999.

APPENDIX I DESIGN NOTES

1)  How the proxy code signing works:Since the introduc-
tion of JDK 1.1, Java has had the facilities for signing JAR
files. The signature is stored as a triple (public key, message
digest, signature), together with some (signer name, public
key) certificates. However, this signing method has one seri-
ous shortcoming: it’s not possible to set “expiry dates” for the
signatures. In this project, we wanted that possibility, so we
had to make some modifications.

There are basically two ways of achieving the expiration.
The straight-forward way is to change the JAR file signature
to contain the validity information. Using SPKI certificates
this could look like this:

(issuer (public-key serviceKey)
subject (object-hash jarMsgDigest)
tag “siesta.system proxyCode”
validity)

This would, however, require modification to the JAR file
loading code. This is by no means impossible; it has been
done in the TeSSA project. In this project, however, we de-
cided to use another approach.

Our approach splits the signature to two parts. Instead of
storing (public key, message digest, validity, signature) we
store (public key 1, message digest, signature) using standard
JAR signing code, and (public key 1, public key 2, validity,
signature) using our own code. The combination of these is

the desired result. Furthermore, our approach has a numbe
additional benefits:

• We don’t have to re-sign the JAR file if it hasn’t changed
Since the JAR files are stored on a web server, the appli
tion might not be able to easily access them.

• We don’t have to modify the JAR file loading code.

• We can use existing JDK tools for creating a part of the si
nature.

The main drawback is that the signature expiry date is
visible to standard Java components, only to our own spec
code (which knows how to combine the two certificates).

2)  How the proxy data signing works:In addition to veri-
fying the authenticity of the proxy bytecode, we would like t
be able to verify the proxy data as well. The straight-forwa
way would be to calculate the message digest of the seriali
proxy object, create a certificate, and store the certificate
the Jini lookup service. However, there are a number of pro
lems with this:

• The application communicating with the lookup servic
would have to know how to get the certificate and pass it
to ProxyVerifier.

• Java deserialization code would have to be modified to c
culate the digest before deserialization.

We solved this by asking the proxy object to calculate i
own message digest. The proxy bytecode has been verifie
this point, so the proxy isn’t completely untrusted. The impl
cations of doing this aren’t yet quite clear. It seems that t
service can’t gain any advantage by returning the wrong m
sage digest, since it could sign it anyway. On the other hand
lazy service writer could defeat this check by always returni
the same message digest (for example, zero).


	Extending Jini with Decentralized Trust Management
	Abstract
	I. Introduction
	II. Access control
	A. SPKI certificates
	B. Using authorization in Jini

	III. Changes to the Jini operation model
	IV. Implementation architecture
	A. Functionality
	1) Registering a service
	2) Retrieving a service proxy
	3) Accessing the service


	V. Conclusions

	Acknowledgments
	References
	Appendix I Design notes
	1) How the proxy code signing works
	2) How the proxy data signing works



