
An expert system for analyzing firewall rules

Pasi Eronen and Jukka Zitting
Helsinki University of Technology
{pasi.eronen, jukka.zitting}@hut.fi

Abstract

When deploying firewalls in an organization, it is essen-
tial to verify that the firewalls are configured properly. The
problem of finding out what a given firewall configuration
does occurs, for instance, when a new network administra-
tor takes over, or a third party performs a technical secu-
rity audit for the organization. While the problem can be
approached via testing, non-intrusive techniques are often
preferred.

Existing tools for analyzing firewall configurations usu-
ally rely on hard-coded algorithms for analyzing access
lists. In this paper we present a tool based on constraint
logic programming (CLP) which allows the user to write
higher level operations for, e.g., detecting common config-
uration mistakes. Our tool understands Cisco router access
lists, and it is implemented using Eclipse, a constraint logic
programming language.

The problem of analyzing firewall configurations lends
itself quite naturally to be solved by an expert system. We
found it surprisingly easy to use logic statements to express
knowledge on networking, firewalls, and common config-
uration mistakes, for instance. Using an existing generic
inference engine allowed us to focus on defining the core
concepts and relationships in the knowledge base.

1 Introduction

Firewalls are essential for organizations that are connected
to the Internet. However, it is not enough to simply have a
firewall—it must also be configured properly. Firewall con-
figurations are often written in a low-level language which
is very hard to understand. For instance, the order of the
rules is often very important. Thus, it is often quite diffi-
cult to find out which connections and services are actually
allowed by the configuration.

This brings up two related problems: how to express the
organization’s security policy in a language understood by
the firewall; and finding out what a given firewall config-
uration actually does. This second problem often occurs
when a new network administrator takes over, for instance,
or when a third party is performing a technical security au-
dit for the organization.

In this paper, we present a tool which helps administra-

tors in analyzing firewall rules. The tool is designed to
be interactive: the administrator can ask questions about
the network traffic permitted, and the tool answers, for in-
stance, by listing which ports are allowed on a given host.
No network traffic is generated; the analysis is based solely
on the configuration files and topology information given
by the user.

The tool is implemented using Eclipse, a constraint logic
programming system, which presents an elegant framework
for adding new rules and making complex queries. In ad-
dition to performing relatively simple operations on the
list—for instance, finding rules which are never matched—
the tool also includes expert knowledge about the field.
This knowledge includes details of different network pro-
tocols (and their security implications) and common con-
figuration mistakes seen in real life. The flexibility offered
by logic programming makes adding new operations and
checks easy.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the background in firewalls, expert sys-
tems, and logic programming. We present the basic struc-
ture and concepts of our software, especially of the knowl-
edge base, in Section 3. The different functions are demon-
strated using a concrete example in Section 4. Related work
is briefly discussed in Section 5, and Section 6 evaluates our
approach in the light of the alternative solutions. We also
give some ideas for future work. Finally, Section 7 contains
our conclusions from this research.

2 Background

Due to space limitations, we assume the reader has some
background in TCP/IP networking.

2.1 Firewalls

Firewalls usually function as routers which connect differ-
ent network segments together. Based on their configura-
tion, they restrict the traffic flowing between the different
networks. Depending on the protocol layer they operate at,
firewalls can be classified into packet filters, circuit prox-
ies, and application level proxies [23]. Often these tech-
niques are employed together. Since any organization con-
nected to the Internet already has some kind of router, and

1

1 permit udp any host 10.0.0.1 eq 53
2 deny udp any host 10.0.0.2
3 permit udp any 10.0.0.0 0.0.0.255 eq 123
4 permit udp any host 10.0.0.2 eq 177
5 deny ip any any

Figure 1: An example of a Cisco router access list. Note
that the fourth rule is never matched because of the
second rule.

most routers have at least simple packet filtering capabili-
ties, routers are often used in addition or instead of more
complex firewall products. However, routers (and many
other simple packet filters) lack good user interfaces for
specifying the desired security policy.

Simple packet filters usually use simple ordered lists of
rules. An example of a Cisco router access list is shown
in Figure 1. When a packet is received, the list is scanned
from the start to the end, and the action (either “permit” or
“deny”) associated with the first match is taken. If a packet
doesn’t match any of the rules, the default action is “deny”.
Often a “deny all” rule is included at the end of the list to
make it easier to verify that a list has not been truncated.
Separate lists can be specified for each network interface.

The rules can use the following fields from the IP proto-
col header: next level protocol (e.g., TCP or UDP), source
and destination IP addresses, type-of-service, and prece-
dence. In addition, some fields for upper level protocols,
such as TCP and UDP port numbers can be used. For a
more complete discussion of the syntax of the rules used
by Cisco routers, see [4] or [17].

Since the first matching rule is always used, it is very
easy to make mistakes when writing access lists, especially
when the lists are long (several hundred rules is not un-
common). For instance, the fourth rule in Figure 1 is never
matched because the packets are stopped at the second rule.

2.2 Expert systems

Expert systems are computer programs that are used to
solve problems and answer questions in a problem domain
that ordinarily requires human expertise. This goal is usu-
ally achieved by combining a logical inference engine with
a knowledge base. The information in the knowledge base
contains a set of known facts and a set of production rules
that allow if-then inferences on the facts and other acquired
information. [18]

Expert systems have been applied in a wide range of
industrial and commercial problems. Typical applications
include diagnosis, planning, scheduling, decision support,
and process monitoring and control. [8]

Perhaps the most prominent application of expert sys-
tems in security has been in the field of intrusion detection.
Axelsson’s survey [1] gives a good overview of the field.

2.3 Constraint logic programming

Logic programming is a programming paradigm that uses
logical inference to solve problems. Instead of giving the
computational steps required to solve a problem, a logic
program gives the logical facts and dependencies that de-
scribe a solution and uses an inference engine to solve the
problem.

Constraint logic programming (CLP) is logic program-
ming extended with constraint satisfaction capabilities.
Constraint satisfaction is a more general operation than uni-
fication used in normal logic programming. The unification
operation is able to resolve the structure and finally the ex-
act value of a variable, and constraint satisfaction adds the
possibility to constrain the possible values of a variable. [6]

The ability of setting truly generic constraints is nor-
mally not feasible, and therefore real CLP systems only
allow certain types of constraints, such as linear equalities
and inequalities over real numbers.

A complete explanation of how a constraint logic pro-
gramming system works is beyond the scope of this paper.
Interested readers should check [6] or a textbook.

Applications of logic programming and other compu-
tational logic techniques in computer security range from
generating security test cases for the AIX operating system
[7] to analyzing cryptographic protocols (e.g., [21]).

3 Implementation

Our tool has three major components: a knowledge base, an
inference engine, and a user interface. This structure is typ-
ical of expert systems. The knowledge base is a collection
of facts and if-then production rules that represent stored
knowledge about the problem domain. The inference en-
gine is the processing unit that solves presented problems
by making logical inferences on the given facts and rules
stored in the knowledge base. The user interface controls
the inference engine and manages system input and output.

The knowledge base, the core of the system, is described
below in detail. The inference engine and the user interface
are briefly discussed at the end of this section.

3.1 Knowledge base

The knowledge base of our system is a collection of logical
rules and facts expressed in the Prolog-based programming
language Eclipse [24]. The declarative language makes it
easy to express knowledge without mixing the information
with computational details.

The knowledge base contains both static and dynamic
information. Knowledge about different network protocols
and common configuration mistakes, for instance, is static;
the access lists themselves and information about the net-
work topology is given by the user when starting the sys-
tem.

2

In this section, we use a combination of Prolog and stan-
dard logical notation to show examples of the rules of our
knowledge base. This should make it easier for readers
without Prolog background to understand the expressions.
However, to keep with the Prolog style we have omitted ex-
istential qualifiers and expect that all variables (words start-
ing with a capital letter) are existentially qualified.

3.1.1 Representing packets

The simplest and most fundamental concept of our system
is a packet. IP packets are represented as 6-tuples (proto-
col, source IP, destination IP, source port, destination port,
flags), where all entries are numbers. Theflagsfield is used
only for TCP connections: 0 represents a packet which
starts a new connection (i.e., the SYN bit it set and ACK
bit is cleared), and 1 represents packets belonging to exist-
ing connections.

The following predicate defines this basic concept in the
knowledge base:

packet((Proto,Src,Dst,SrcPort,DstPort,Flags))←
0≤ Proto≤ 255∧
0≤ Src≤ 4294967295∧
0≤ Dst≤ 4294967295∧
0≤ SrcPort≤ 65535∧
0≤ DstPort≤ 65535∧
0≤ Flags≤ 1

In effect, the declaration spans a 6-dimensional finite,
discrete space that we call the “packet space”. Individual
packets can be thought of as points in the packet space.

Parts of the packet space can be specified by giving more
constraints. For example, the following declaration speci-
fies the set of TCP (protocol 6) packets whose destination
is the HTTP port (80) of host 10.0.0.1 (167772161):

packet((Proto,Src,Dst,SrcPort,DstPort,Flags)) ∧
Proto= 6∧ Dst = 167772161∧ DstPort= 80

3.1.2 Representing access lists

Access lists are collections of packet filtering rules. A rule
consists of a 6-tuple of ranges for matching packets and an
action token (“permit” or “deny”) for specifying how the
packet filter should treat packets matched by the rule. The
access list rules are processed in the order they are given
until a match is found. The first matching rule specifies the
action taken by the packet filter.

Our system represents access list rules as constraints on
the packet space defined above. Each rule is associated
with a part of the packet space (a 6-dimensional hyper-
cube defined by the 6-tuple of ranges) and the specified ac-
tion token. For instance, the rule “permit udp any 10.0.0.0
0.0.0.255 eq 53” would be associated with the range “(17,
0..255.255.255.255, 10.0.0.1, 0..65535, 53, 0..1)” and the
token “permit”. The system also remembers the line num-
ber and contents of the rule declaration in the access list
file.

At first we tried representing the entire access list just
as an ordered collection of rules. We defined the packet
matching and list traversal algorithms as rules in the knowl-
edge base. This approach turned out to be counterintuitive
and inefficient. To overcome these difficulties and to get a
more elegant and simple representation of access lists we
decided to “decorrelate” the rules; that is, split them into
non-overlapping rules [22].

When an access list file is loaded, the rules are first
decorrelated and the resulting rule set is added to the
knowledge base asmatch_listpredicates like the one shown
below:

match_list(100, permit, (Proto,Src,Dst,SrcPort,DstPort,Flags))←
Proto= 6∧
3232235776≤ Src≤ 3232236031∧
Dst = 167772161∧
0≤ SrcPort≤ 65535∧
DstPort= 23∧
0≤ Flags≤ 1

This predicate corresponds to the access list rule “access-
list 100 permit tcp 192.168.1.0 0.0.0.255 host 10.0.0.1 eq
23”. We use standard logic notation here to emphasize the
fact that the knowledge base is a collection of logic state-
ments. The actual syntax used in defining the knowledge
base is a straightforward mapping of the corresponding log-
ical notation.

It is important to notice that this rule has a very different
meaning in CLP and ordinary Prolog—indeed, many actual
CLP systems also use a different syntax (such as “#<=”
instead of ordinary “<=”). While the ordinary Prolog rule
could be used totest if a given packet matches the rule,
this CLP rule can also answer the question “which kinds of
packets the rule matches”.

Based on these predicates the inference engine is able to
find answers to questions like “What is the action for this
packet?”, “What packets are permitted by this access list?”,
or “From which sources are packets to this destination per-
mitted?”. Using the auxiliary information stored for each
rule, the inference engine can even answer questions like
“Why is this packet denied?”, or “What rules permit pack-
ets from this network?”.

3.1.3 Representing topology and connections

Firewalls often have many network interfaces, and to effec-
tively analyze the access lists, it is necessary to know which
networks or address ranges are located behind which inter-
face.

This information is represented in the knowledge base
by two simple predicates,network(interface, network)and
network_internet(interface), the latter one indicating a con-
nection to the Internet (where addresses not explicitly men-
tioned are located).

The access lists combined with the topology informa-
tion can be used to construct higher level constructs.

3

Firewall

Internal network 10.10.10.0/24
 Demilitarized zone 10.10.11.0/26

External network 10.10.11.128/25

Internet

Web server
 DNS server

Terminal server

Workstations
 Server
 Mail server
 PPP network

10.10.11.64/26

Router

Figure 2: The network of a hypothetical small company.

For example, a predicate indicating that a TCP connec-
tion from a certain source address to some host and port
is possible, can be implemented as follows. Heread-
dress_in_interface(address, interface)is a simple predicate
which simply uses the information given by thenetwork
predicates.

tcp_connection(Src, Host, Port)←
address_in_interface(Host, HostInterface) ∧
interface(SrcInterface, AccessList) ∧
address_in_interface(Src, SrcInterface) ∧
SrcInterface6= HostInterface∧
match_list(AccessList, (6,Src, Host, _,Port, 0), permit)

Note that this predicate only checks the action on the first
SYN packet and expects that the firewall will permit the
other packets of the connection if the first one is permitted.
This is a common configuration, and it can be checked us-
ing another predicate. Requiring the “permit” action on the
other packets as well would make this predicate less useful
in detecting erroneous configurations.

This predicate can be used to answer questions such as
“Which hosts can connect to the Telnet port on our web
server?” or “What connections are allowed from host X to
our intranet?”.

3.1.4 Extending the knowledge base

The knowledge base of our system can be extended by
adding new higher level rules and facts. The existing con-
cepts and knowledge can be used as a basis when designing
new functionality. For example, the connection concept de-
fined in the previous section is a very good starting point for
new rules.

The following predicate tests that a DNS server can be
accessed correctly using both UDP and TCP connections:

dns_server(Host, Src)←
udp_connection(Src, Host, 53)∧
tcp_connection(Src, Host, 53)

Another useful predicate is the following one, that can
be used to query all permitted incoming TCP connections
from the Internet:

incoming_tcp(Host, Port)←
internet_address(Src) ∧
tcp_connection(Src, Host, Port)

A slightly more complex example, with corresponding
Eclipse source code, is given in Section 4.4.

3.2 Inference engine

The inference engine of our tool is Eclipse, a constraint
logic programming language based on Prolog [24]. By us-
ing an existing general purpose tool we were able to con-
centrate to the core problems and avoid laborious imple-
mentation work. We also gained a standard and extensi-
ble platform with proven performance and quality. Fur-
thermore, porting our system to some other Prolog-based
constraint logic programming language should be relatively
easy.

3.3 User interface

The user interface of our tool contains a preprocessor for
parsing access list files, a set of input and output handling
routines, and a simple command prompt interface for man-
aging the system. Together the user interface components
allow an administrator to interactively inspect the access
lists.

4

The operations implemented in our tool can be classi-
fied in three categories: 1) queries and operations on access
lists themselves, 2) queries about the network data flows
allowed by access lists, and 3) expert rules for recogniz-
ing and solving common configuration problems. The op-
erations in these categories are described using a concrete
example in Section 4.

Most of the user interface is written in Prolog using the
I/O libraries of Eclipse. The preprocessor for parsing of
text files containing Cisco access lists is written in Perl,
since Perl has nicer facilities for string processing, and we
had much more experience in Perl programming.

4 User interface functions

The operations are best described using a concrete exam-
ple. Figure 2 illustrates the network of a hypothetical small
company. The network has three segments: internal net-
work (containing employee workstations and servers), a
demilitarized zone (e.g., web server) and external network
(connection to the Internet service provider).

When the system is started, the administrator first loads
the access lists, and then gives system a description of
the network’s topology (commands typed by the user are
shown in boldface). This information can also be stored in
a file for further use.

$ eclipse -b all.pl -e shell

? read_list int_l cisco "acl_int.txt"
Read 11 rules, decorrelated into 31 clauses

? read_list dmz_l cisco "acl_dmz.txt"
Read 15 rules, decorrelated into 70 clauses

? read_list ext_l cisco "acl_ext.txt"
Read 16 rules, decorrelated into 123 clauses

? interface dmz dmz_l
? interface int int_l
? interface ext ext_l

? network int 10.10.10.0/24
? network dmz 10.10.11.0/26
? network dmz 10.10.11.64/26
? network ext 10.10.11.128/25
? network ext internet

4.1 Network properties

The basic problem in analyzing an access list is to recog-
nize the network data flows allowed by the list. The follow-
ing are examples of common questions:

• Which services are accessible on a given host?

• Is a given host/network accessible from another given
host/network?

• What kinds of traffic is allowed between two net-
works?

• From which networks is a given host accessible?

These questions can easily be answered by using the
match_listpredicate itself. The inference engine will query
the knowledge base to find all possible substitutions for the
free variables in a given goal. The user interface compo-
nents collects the results and presents them in an easily
readable format.

For instance, the following command can be used to
show all services on host 10.10.11.8 (the web server in
DMZ).

? show_services 10.10.11.8

UDP services on 10.10.11.8:

port from
any 10.10.10.0/24

TCP services on 10.10.11.8:

port from
<= 79 10.10.10.0/24
80 0.0.0.0 - 10.10.10.255

10.10.11.128 - 255.255.255.255
>= 81 10.10.10.0/24

The report shows not only which services are allowed,
but also from which source addresses they can be used.
Thus, the port 80 is correctly accessible everywhere (as it
should be), but also all other ports can be accessed from the
internal network. Whether this is a good idea depends on
the circumstances; in many cases it is probably OK, but in
some environments, such as schools, end users are usually
not trusted very much.

4.2 Configuration problems

Operations mentioned in the previous section can be im-
plemented directly with a specification of the behavior of
access lists. They do not require or contain “expert knowl-
edge”. In addition to these simple operations, the expert
system can also be used to recognize common configura-
tion problems and mistakes. Simple such operations are for
example:

• Firewall doesn’t block directed broadcasts (that is,
packets destined for the broadcast address of some
connected network).

• Insufficient prevention of address spoofing, both for
incoming and outgoing packets (ingress filtering).

• Domain Name System (DNS) server is reachable only
by UDP, not TCP (often undetected, since it works just
fine 99% of the time).

Predicates for checking these kinds of configuration
problems can easily be built on top of the previously de-
fined predicates about network properties. For example,
the proper blocking of directed broadcasts can be checked
as shown below.

5

? check_broadcasts

10.10.10.0/24 OK
10.10.11.0/26 Allowed from [ext]
10.10.11.64/26 OK
10.10.11.128/25 OK

The report shows that broadcast packets to 10.10.11.0/26
are allowed from the external interface, but other broad-
casts are properly blocked.

Section 4.4 describes how these operations can be easily
built from existing rules.

4.3 Access list properties

The properties of the access list itself can also be analyzed.
The most useful operation on the access list itself is recog-
nizing rules which are never matched. This usually indi-
cates a configuration mistake (for instance, the fourth rule
in Figure 1).

In the following example, the network administrator has
probably intended to allow SMTP and IMAP protocols
(ports 25 and 143) to host 10.10.10.5, but some earlier rule
blocks these packets.

? show_lists

int: 11 rules
dmz: 15 rules
ext: 16 rules

? show_never_matched dmz

Rules which are never matched:
12: permit tcp 10.10.11.64 0.0.0.63 host 10.10.10.5 eq 25
13: permit tcp 10.10.11.64 0.0.0.63 host 10.10.10.5 eq 143

4.4 Defining new predicates

While the operations described in the previous sections are
clearly useful to administrators, the real power of our tool
lies in the ability to easily add higher level rules to the
knowledge base. We demonstrate this by describing a rule
to check foraddress spoofing.

Informally, hosts located behind an interface can spoof
(or forge) addresses from a certain network, if some packet
with that network source address is accepted, but that net-
work is actually located behind some other interface. In
Eclipse, this can be expressed as follows.

can_spoof(Interface, NetworkString) :-
network(RealInterface, NetworkString),
network_string(Network, NetworkString),
interface(Interface, List),
match_list(List, [_, Network, _, _, _, _], permit),
Interface \= RealInterface.

For those unfamiliar with Prolog, “:-” is the same as
“←”, the commas at the end of each line represent con-
junction (“and”), and the underscore is a wildcard which

matches any value. This predicate can be used in Eclipse
directly to find out if spoofing is allowed:

[eclipse]: can_spoof(If, Net).
If = ext
Net = "10.10.11.0/26"

Eclipse replies with a substitution which makes the query
true. The result shows that the external interface is miss-
ing a “deny ip 10.10.11.0 0.0.0.63 any” rule. Add a cou-
ple of lines of output formatting, and we have a ready
check_address_spoofing command!

? check_address_spoofing

10.10.10.0/24 OK
10.10.11.0/26 Can be spoofed from [ext]
10.10.11.64/26 OK
10.10.11.128/25 OK

5 Related work

Much of the research in firewalls has focused either on per-
formance or the problem of expressing an organization’s
security policy in a language understood by a firewall, i.e.,
tools for creating access lists [2, 3, 11]. There are also
some commercial products available, such as Cisco’s Ac-
cess Control List Manager [5] and Secure Policy Manager
[16]. Modern firewall products usually allow the specifica-
tion of rules using a graphical user interface.

The work most similar to ours has been done by Mayer,
Wool, and Ziskind [19]. Their firewall analysis engine is
based on graph algorithms, and thus representing any ex-
pert knowledge or rules is harder than in the logic program-
ming. On the other hand, their tool has at least some sup-
port for network address translation (NAT), and is being
turned into a commercial product by Lumeta corporation
[25].

Similar work based on a logic background has been done
by Hazelhurst et al. [13, 14, 15]. They have used ordered
binary decision diagrams to analyze access lists. This rep-
resentation allows efficient manipulation of the lists, and
finding redundant rules is easy, for instance. However, the
system does not allow expressing custom rules using a logic
programming syntax.

Several researches have also implemented tools for de-
scribing the contents of an access list based on other ap-
proaches. Guttman describes an approach for generating
filters based on a security policy and verifying that a packet
filter implements some security policy [11]. Molitor de-
scribes a tool which prints a more human readable descrip-
tion of an access list [20]. Bartal et al. have written a “rule
illustrator”, a tool for drawing an access list in a graphical
form [2].

The low-level implementation of packet filters, called the
packet classification problemhas also received quite a lot

6

of attention. However, most of the work has focused on
performance issues and hardware implementations; Feld-
man and Muthukrishnan [10] give a recent summary and
a good bibliography of the topic. Although performance
issues are not directly related to security, the problem of
detecting conflicts in packet filters is. Hari et al. [12] have
applied these techniques to analyzing access lists from a
security viewpoint, and Eppstein et al. [9] present a fast
algorithm for detecting conflicts.

6 Evaluation and future work

The main benefits of our system are the use of logic pro-
gramming and a generic inference engine. Logic program-
ming makes it easy to express and extend the knowledge
base of the system. The knowledge is expressed in a stan-
dard declarative language that closely matches the con-
structs of logic. A generic inference engine, in this case
Eclipse, greatly reduced the implementation effort of our
system. We were able to prototype and implement the sys-
tem in just a couple of weeks of time, fully focusing on
expressing knowledge and building the user interface. Our
tool shows that solving these kinds of analysis problems
does not require custom algorithms or data structures.

Our tool is still in the “research prototype” stage, demon-
strating that using constraint logic programming for this
problem is feasible. There are several possibilities for en-
hancements. A better user interface, which would hide the
Prolog syntax for at least most operations, would make the
tool easier to use. Also, supporting more firewalls and more
complex rules would make the tool more useful in real-
world environments.

We are also considering porting the system to some open
source CLP implementation, because using Eclipse in com-
mercial environments requires buying a license.

A very interesting development possibility would be to
reverse the problem and use the CLP capabilities to plan,
and possibly optimize, an access list that implements the
higher level security policies expressed as logical con-
straints.

7 Conclusions

The ability to clearly analyze what a certain firewall con-
figuration does is very important in many circumstances.
While existing tools based on hard-coded algorithms can
be valuable, this approach makes adding new functionality
harder. For instance, it can be difficult to embed knowledge
about common configuration mistakes.

We have taken a different approach, and used a general
purpose constraint logic programming system. Logic pro-
gramming makes it easy to write useful functions for ana-
lyzing rules, and expert knowledge can be represented in a
very compact form. Our implementation, which analyzes

Cisco router access lists, shows that this approach works
also in practice.

Acknowledgements

We would like to thank Jonna Särs from Nixu Ltd. for her
comments on earlier versions of this paper, and for provid-
ing a real-world access list example for testing.

References

[1] Stefan Axelsson. Intrusion detection systems: A tax-
onomy and survey. Technical Report 99-15, Depart-
ment of Computer Engineering, Chalmers University
of Technology, Sweden, March 2000.

[2] Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai
Wool. Firmato: A novel firewall management toolkit.
In Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy, pages 17–31, Oakland, California,
May 1999.

[3] Christopher J. Calabrese. A tool for building firewall-
router configurations.Computing Systems, 9(3):239–
253, Summer 1996. USENIX Association.

[4] Cisco Systems, Inc. Cisco IOS release 10.3 router
products command reference. http://www.cisco.com/
univercd/cc/td/doc/product/software/ios103/rpcr/,
1998.

[5] Cisco Systems, Inc. CiscoWorks2000 Access Control
List Manager 1.2 overview. http://www.cisco.com/
warp/public/cc/pd/wr2k/caclm/prodlit/aclm_ov.htm,
November 2000.

[6] Jacques Cohen. Constraint logic programming lan-
guages.Communications of the ACM, 33(7):52–68,
July 1990.

[7] Janet A. Cugini, Shau-Ping Lo, Matthew S. Hecht,
Chii-Ren Tsai, Virgil D. Gligor, Radhakrishna
Aditham, and T. John Wei. Security testing of AIX
system calls using Prolog. InProceedings of the Sum-
mer 1989 USENIX Conference, pages 223–237, Bal-
timore, Maryland, June 1989.

[8] Robert S. Engelmore and Edward Feigenbaum. Ex-
pert systems and artificial intelligence. InKnowledge-
based systems in Japan. Japanese Technology Evalu-
ation Center, May 1993.

[9] David Eppstein and S. Muthukrishnan. Internet
packet filter management and rectangle geometry. In
Proceedings of the 12th Annual ACM–SIAM Sym-
posium on Discrete Algorithms (SODA 2001), pages
827–835, Washington, D.C., January 2001.

7

[10] Anja Feldman and S. Muthukrishnan. Tradeoffs for
packet classification. InProceedings of IEEE INFO-
COM 2000, pages 1193–1202, Tel Aviv, Israel, March
2000.

[11] Joshua D. Guttman. Filtering postures: Local en-
forcement for global policies. InProceedings of the
1997 IEEE Symposium on Security and Privacy, Oak-
land, California, May 1997.

[12] Adiseshu Hari, Subhash Suri, and Guru Parulkar.
Detecting and resolving packet filter conflicts. In
Proceedings of IEEE INFOCOM 2000, pages 1203–
1212, Tel Aviv, Israel, March 2000.

[13] Scott Hazelhurst. Algorithms for analysing firewall
and router access lists. Technical Report TR-Wits-
CS-1999-5, Department of Computer Science, Uni-
versity of the Witwatersrand, South Africa, July 1999.

[14] Scott Hazelhurst, Adi Attar, and Raymond Sinnap-
pan. Algorithms for improving the dependability of
firewall and filter rule lists. InProceedings of the In-
ternational Conference on Dependable Systems and
Networks (DSN 2000), pages 576–585, New York,
June 2000. IEEE Computer Society Press.

[15] Scott Hazelhurst, Anton Fatti, and Andrew Henwood.
Binary decision diagram representations of firewall
and router access lists. Technical Report TR-Wits-
CS-1998-3, Department of Computer Science, Uni-
versity of the Witwatersrand, South Africa, October
1998.

[16] Susan Hinrichs. Policy-based management: Bridging
the gap. InProceedings of the 15th Annual Computer
Security Applications Conference, Phoenix, Arizona,
December 1999. IEEE Computer Society Press.

[17] Kent Hundley and Gil Held.Cisco Access Lists Field
Guide. McGraw-Hill, March 2000.

[18] L. C. Jain. Introduction to knowledge-based systems.
In Proceedings of the Electronic Technology Direc-
tions to the Year 2000, pages 18–27, Adelaide, Aus-
tralia, May 1995. IEEE Computer Society Press.

[19] Alain Mayer, Avishai Wool, and Elisha Ziskind.
Fang: A firewall analysis engine. InProceedings of
the 2000 IEEE Symposium on Security and Privacy,
pages 177–187, Oakland, California, May 2000.

[20] Andrew Molitor. An architecture for advanced packet
filtering. In Proceedings of the 5th USENIX UNIX
Security Symposium, Salt Lake City, Utah, June 1995.

[21] Pekka Nikander. Modelling of cryptographic proto-
cols. Licenciate’s thesis, Helsinki University of Tech-
nology, December 1997.

[22] Luis A. Sanchez and Matthew N. Condell. Security
policy protocol. Work in progress, Internet draft ietf-
ipsp-spp-00, http://www.ietf.org/proceedings/00jul/I-
D/ipsp-spp-00.txt, July 2000.

[23] Christoph L. Schuba.On the Modeling, Design, and
Implementation of Firewall Technology. Doctoral dis-
sertation, Purdue University, December 1997.

[24] Mark Wallace, Stefano Novello, and Joachim
Schimpf. Eclipse: A platform for constraint logic pro-
gramming. Technical report, IC-Parc, Imperial Col-
lege, London, August 1997.

[25] Avishai Wool. Architecting the Lumeta firewall an-
alyzer. InProceedings of the 10th USENIX Security
Symposium, Washington, D.C., August 2001.

8

