
NOKIA

Research Center
NRC-TR-2008-002

TCP Wake-Up: Reducing Keep-Alive Traffic in
Mobile IPv4 and IPsec NAT Traversal

Pasi Eronen

Nokia Research Center
pasi.eronen@nokia.com

January 31, 2008

Abstract:
Applications such as instant messaging and push email require long-lived connections between clients and

servers. In the absence of other traffic, stateful firewalls and Network Address Translators (NATs) require
“keep-alive” messages to maintain state for such persistent connections. We present new measurements
analyzing the energy consumption of these keep-alive messages on a mobile phone in 2G (GSM), 3G
(WCDMA), High-Speed Downlink Packet Access (HSDPA), and IEEE 802.11 Wireless LAN networks. The
measurements confirm earlier results showing that frequent keep-alive messages consume significant
amounts of energy in 2G and 3G networks, but suggest they are not a significant problem in Wireless LANs.

To reduce energy consumption, we introduce TCP Wake-Up, an extension to Mobile IPv4 and IPsec NAT
traversal mechanisms. This extension significantly reduces the need for keep-alive messages, while still
avoiding complexity of IP-over-TCP tunneling. Our measurements show that TCP Wake-Up can extend
battery lifetime by a factor of 2 to 7 in 2G/3G networks. The results also suggest guidelines for developers of
future protocols: in particular, we claim that “always-on” applications that aim to be used in current 2G/3G
networks cannot be solely based on UDP.

Index Terms:
energy consumption
firewalls
Mobile IPv4
IPsec

NRC-TR-2008-002 1 Copyright © 2008 Nokia

TCP Wake-Up: Reducing Keep-Alive Traffic
in Mobile IPv4 and IPsec NAT Traversal

Pasi Eronen
Nokia Research Center
pasi.eronen@nokia.com

Abstract—Applications such as instant messaging and push
email require long-lived connections between clients and servers.
In the absence of other traffic, stateful firewalls and Network
Address Translators (NATs) require “keep-alive” messages to
maintain state for such persistent connections. We present new
measurements analyzing the energy consumption of these keep-
alive messages on a mobile phone in 2G (GSM), 3G (WCDMA),
High-Speed Downlink Packet Access (HSDPA), and IEEE 802.11
Wireless LAN networks. The measurements confirm earlier
results showing that frequent keep-alive messages consume sig-
nificant amounts of energy in 2G and 3G networks, but suggest
they are not a significant problem in Wireless LANs.

To reduce energy consumption, we introduce TCP Wake-Up,
an extension to Mobile IPv4 and IPsec NAT traversal mech-
anisms. This extension significantly reduces the need for keep-
alive messages, while still avoiding complexity of IP-over-TCP
tunneling. Our measurements show that TCP Wake-Up can
extend battery lifetime by a factor of 2 to 7 in 2G/3G networks.
The results also suggest guidelines for developers of future
protocols: in particular, we claim that “always-on” applications
that aim to be used in current 2G/3G networks cannot be solely
based on UDP.

I. INTRODUCTION
Firewalls and Network Address Translators (NATs) are

ubiquitous in today’s Internet, and it is increasingly rare to
have a personal, non-server computer with global IP layer
reachability. Instead, the host is protected by a stateful
“middlebox” that keeps track of active connections, and drops
packets coming from the “outside” unless they are part of an
existing connection.

The firewall/NAT state is automatically created when the
host “inside” the firewall/NAT (later called “client”) initiates a
connection, and it will be removed once the connection has
been unused for some time. Because the connection state is
created only by packets sent by the client, servers outside the
firewall/NAT are not able to reach the client if the state has
expired. To prevent this, many protocols regularly send dum-
my “keep-alive” packets that reset the timers in the NAT or
firewall and preserve reachability.

The connection state timeout values vary from product to
product, but typical values are 30…180 seconds for UDP and
30…60 minutes for TCP [8]. This implies that applications
using UDP need to send keep-alive messages much more
frequently than those based on TCP.

Most application layer protocols use TCP, but UDP is
commonly used to allow network layer mobility and security
mechanisms to co-exist with NATs and firewalls. In partic-
ular, the NAT/firewall traversal mechanisms for Mobile IPv4

[15] and IPsec [11] tunnel IP packets over UDP. Using UDP
instead of TCP avoids the performance problems associated
with multiple layers of TCP retransmissions [9][30] and de-
lays due to head-of-line blocking.

Sending keep-alive messages can consume significant
amounts of energy in small battery-powered devices. For
example, Haverinen et al. [8] have shown that sending UDP
keep-alives once every 40 seconds increases idle energy con-
sumption in 3G WCDMA by a factor of 3 to 16 depending on
the radio network configuration.

In Section II, we revisit the results of Haverinen et al. to
examine the impact of phone model, new radio technologies
(HSDPA and Wireless LAN), and the type of keep-alive
message used. The results confirm that UDP keep-alives will
lead to unacceptably short battery lifetimes in 2G, 3G, and
HSDPA, but their impact is much smaller in Wireless LAN.

In Section III of this paper, we introduce TCP Wake-Up, an
extension to Mobile IPv4 and IPsec NAT traversal mech-
anisms. The extension keeps the benefits of tunneling IP pack-
ets over UDP, but does not require sending UDP keep-alives.
The basic idea is to establish a separate TCP connection be-
tween the client and home agent (or VPN gateway in the case
of IPsec). When there is no ordinary data traffic, UDP keep-
alives are not sent; thus, the connection state in the NAT or
firewall will expire, and the client cannot be reached with
UDP-tunneled packets. Instead, when the home agent needs to
reach the client, it uses the TCP connection to “wake up” the
client; the client will then re-establish the UDP-based tunnel.

All ordinary data packets are still sent using UDP encapsu-
lation, avoiding the performance problems and complexity as-
sociated with TCP encapsulation. However, when the client is
idle, the NAT mappings for UDP can be allowed to expire
without losing reachability. Keep-alive messages are still
needed for the TCP connection, but since the typical TCP
mapping timeout is much larger than for UDP (at least one
order of magnitude), the number of keep-alive messages, and
thus energy consumption, is reduced. For example, in the 3G
WCDMA network used for measurements in Section II, using
TCP Wake-Up with typical NAT timeout parameters extends
battery lifetime by a factor of 7. A more detailed analysis of
the benefits and costs is presented in Section IV.

Compared to alternative solutions discussed in Section V,
our work requires modifications only in the client and home
agent/VPN gateway, but not in the network elements, such as
radio access networks and NATs, between them. Thus, the
solution can be deployed by, for example, enterprises that do
not have control over the radio network.

NRC-TR-2008-002 2 Copyright © 2008 Nokia

II. ENERGY CONSUMPTION OF KEEP-ALIVE MESSAGES
Haverinen et al. [8] have measured the energy consumption

of keep-alive messages in 3G WCDMA networks. The results
show that keep-alive messages are expensive in 3G chiefly
because the radio channel stays allocated for a long time (at
least several seconds) after the packet has been sent. This is
because releasing the channel, and thus transitioning back to
“low-power” state, is triggered by inactivity timers in the
Radio Network Controller (RNC), not by the phone. Thus,
configuration of RNC parameters has significant impact on the
total energy consumption.

In this section, we present additional measurements with the
following goals:

First, we want to find out if the results vary significantly
from one phone model to another. The phone used by
Haverinen et al., Nokia 6630, was announced in June 2004,
and was Nokia’s first 3G phone based on the Symbian
operating system. It is plausible that hardware and software
improvements have changed the situation since then.

Second, we want to examine additional radio technologies
available in newer phones, including High-Speed Downlink
Packet Access (HSDPA) and IEEE 802.11 Wireless LAN.

Third, we want to determine the effect of different types of
keep-alive message exchanges. For example, in IPsec, keep-
alive messages are sent only by the client, while in Mobile
IPv4, the home agent sends back an acknowledgment.

A. Measurement Setup
The measurements were performed in Elisa 2G/3G/HSDPA

network in Helsinki, Finland. Using a live network introduces
aspects beyond our control (such as RNC configuration), but it
may also give a more realistic picture than using a test
network, as was done by Haverinen et al.

The phone used was Nokia E65 [17], except for HSDPA
tests which were done with Nokia N95 [18]. All unneeded
features of the phone, such as Bluetooth and display backlight,
were turned off during the measurements.

To measure the energy consumption, we connected the
phone to a power supply using a “dummy battery” and a high-
precision 0.1 ohm shunt resistor. The dummy battery is an
adapter commonly used in phone certification testing: it
emulates the signaling provided by real batteries, and contains
capacitors to smooth sudden voltage spikes.

Measurements were recorded using a National Instruments
DAQPad 6015 data acquisition unit, connected to PC over
USB. The voltage drop across the shunt resistor was sampled
at 100 kHz with custom LabVIEW-based software, averaged
over 100 ms intervals, and post-processed in Excel.

The software consisted of a Java MIDP application that sent
keep-alive packets at configurable intervals, and correspond-
ing server software for sending reply packets when needed.

B. Phone Model and Keep-alive Type
To determine the impact of phone model and keep-alive

type, we measured the average power with two different types
of keep-alive exchanges (a single unacknowledged UDP
packet, similar to IPsec, and a two-message exchange with an
acknowledgment packet, similar to Mobile IPv4), with both
2G and 3G networks. The measurements were repeated with

several different keep-alive intervals (20, 40, 60, and 150
seconds), and without keep-alive messages.

A trace from typical measurement is shown in Fig. 1, with a
detail magnified in Fig. 2. Fig. 2 shows clearly the transition
from idle state to CELL_DCH, staying in CELL_DCH for
6…7 seconds (“T1” timer), transitioning to CELL_FACH for
2 seconds (“T2” timer), and eventually back to idle. (See [8]
for a more detailed description of the state transitions and
associated timers.)

Fig. 3 shows the results for 3G with acknowledgment
packet with different keep-alive intervals. As expected, the
result fit nicely on a line, and a least-squares fitting results in
energy consumption of 9200 mJ/keep-alive exchange, plus 29
mW background consumption.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

time (s)

po
w

er
 (m

W
)

Fig. 1: Power consumption trace of keep-alive messages (with

acknowledgment) in 3G with 40-second interval.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (s)

po
w

er
 (m

W
)

Fig. 2: Detail from Fig. 1, showing the time

spent in different RRC states.

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06

keep-alive frequency (1/s)

av
er

ag
e

po
w

er
 (m

W
)

Fig. 3: Average 3G power consumption of keep-alive

messages (with acknowledgment) with different intervals.
The least-squares fitted line corresponds to 9200 mJ/keep-alive

plus 29mW background consumption.

NRC-TR-2008-002 3 Copyright © 2008 Nokia

2G

2G

3G 3G

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Single packet With acknowledgment

C
os

t o
f s

in
gl

e
ke

ep
-a

liv
e

ex
ch

an
ge

 (m
J)

Fig. 4: Energy consumed by a single keep-alive exchange, for
both 2G and 3G, with and without acknowledgment packet.

Fig. 4 summarizes the results of least-squares fitting for the

other combinations. The background consumption in 2G was
16…19 mW, significantly less than in 3G. With this particular
RNC configuration, the cost of a single keep-alive exchange
was also much smaller in 2G.

These results are reasonably in line with earlier
measurements. For 3G network (with T2=2 s and CELL_PCH
disabled), Haverinen et al. estimate that a single keep-alive
exchange consumes 0.61 mAh (8100 mJ at nominal battery
voltage of 3.7 V), with background current of 6.1 mA (23
mW). We can thus conclude that the impact of phone model is
small in 2G/3G networks compared to the network parameters
and keep-alive interval.

An interesting result is that in 2G, a keep-alive exchange
with acknowledgment packet consumed almost three times as
much energy as a single packet. Apparently, the presence of
downlink packet led to different state transitions in this partic-
ular network configuration. For 3G, there was no significant
difference.

We also tested a simple application-layer keep-alive
exchange over TCP; although this results in three packets (the
client has to send TCP ACK last), the energy consumption
was basically the same as with two-packet exchange.

C. HSDPA
The second set of measurement investigated the impact of

HSDPA. We measured the power consumption of a two-
message keep-alive exchange with plain 3G and HSDPA,
using two different keep-alive intervals (20 and 40 seconds).
Fig. 5 shows the average power in these four cases.

In this particular network setup, there does not seem to be
significant difference between plain 3G and HSDPA. The
phone display indicators also suggested that HSDPA channels
were allocated only during heavy traffic (such as web
browsing), and normal 3G channels were used when sending
only keep-alives.

D. Wireless LAN
Wireless LAN measurements were performed in a Nokia

office 802.11b/g network used mostly for voice-over-IP. No
attempt was made to control for Wireless LAN network
settings known to have impact on energy consumption, such

3G

3G

HSDPA

HSDPA

0

100

200

300

400

500

600

20 s interval 40 s interval

A
ve

ra
ge

 p
ow

er
 (m

W
)

Fig. 5: Average power consumption of a keep-alive

exchange (with acknowledgment) on Nokia N95,
comparing 3G (without HSDPA) with HSDPA.

as beacon and DTIM periods, U-APSD, and ARP caching (see
[19] for discussion).

Fig. 6 shows the average power at different keep-alive
intervals. The energy consumed by keep-alive messages is
significantly smaller than in 2G and 3G, so the limitations of
the measurement setup and background noise are more visible.
However, we can estimate that the cost of a single keep-alive
message to be around 200…400 mJ.

The type of keep-alive exchange was not important for
WLAN.

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25

keep-alive frequency (1/s)

av
er

ag
e

po
w

er
 (m

W
)

Fig. 6: Average Wireless LAN power consumption of
keep-alive messages (with acknowledgment) with different

intervals. The least-squares fitted line corresponds to
280 mJ/keep-alive plus 33 mW background consumption.

E. Discussion
Although we are not aware of other papers (beyond [8]) that

measure energy consumption of keep-alive messages specif-
ically, it is interesting to compare our results with other mea-
surements about idle energy consumption.

Several authors have studied power consumption of IEEE
802.11 Wireless LANs. One recent paper by Agarwal et al. [2]
reports that two CompactFlash 802.11b cards, intended for
PDAs, consumed about 260 mW in idle (power save) mode.
This figure includes only the network interface, not the PDA
itself. The same paper also reports that Cingular 2125 smart

NRC-TR-2008-002 4 Copyright © 2008 Nokia

Client (mobile node) NAT Home agent

UDP mapping created

UDP: Registration Reply (TCP port, connection-ID)

(2) …UDP encapsulated Mobile IP traffic and UDP keep-alives …

(1) UDP: Registration Request

TCP mapping created

(3) TCP: connection establishment

UDP mapping expires

…idle mode, TCP keep-alives only…

(4) decision to enter idle mode, and
stop sending UDP keep-alives

TCP: wake up

(6) UDP: Registration Request

new UDP mapping created

UDP: Registration Reply

store new UDP mapping

start sending UDP keep-alives

UDP: packet

(7) packet retransmission received

UDP: packet

X

(5) packet received for client

TCP: enable wake-up

TCP: disable wake-up

Fig. 7: Overview of TCP Wake-Up with Mobile IPv4.

phone (based on Windows Mobile 5.0) consumed 440 mW
when connected to Wi-Fi network (this includes the whole
phone). In another recent paper, Rahmati and Zhong report
idle (power save) mode power consumption of 70…300 mW
(for the wireless LAN interface alone) for three Windows
Mobile-based smartphones [22].

These figures are remarkably different from our Wireless
LAN measurements (33 mW background consumption for the
whole phone), suggesting that low-power Wireless LAN
chipsets are an area of active development, and vary signif-
icantly from product to product.

III. TCP WAKE-UP
In this section, we introduce “TCP Wake-Up”, an extension

to Mobile IPv4 and IPsec NAT traversal mechanisms.
A typical session using this extension would look as follows

(also shown in Fig. 7):
1. During the Mobile IPv4 registration, the home agent

provides the client with the information it needs to establish a
TCP connection (a port number) and link it to the Mobile IPv4

registration (a connection identifier). A secret key that will be
used to authenticate the TCP connection is also established.
The extensions to Mobile IPv4 registration request/reply
messages are described in detail in Section III.A, and the
corresponding IPsec/IKE extensions in Section III.B.

2. When the client is not idle, it sends UDP keep-alives as
usual.

3. The client establishes a TCP connection to the port given
by the home agent, sends the connection identifier, and
performs authentication using the key established earlier. The
TCP connection can be established when the client registers
with the home agent, or it can be postponed until the client is
about to enter idle mode. The TCP-based protocol is de-
scribed in detail in Section III.C, and the authentication
mechanism (and its justification) in Section III.D.

4. When the client has become idle, it informs the home
agent (requesting the home agent to send TCP-based wake-
ups), and stops sending normal UDP keep-alives. The client
detects that it has become idle based on, e.g., the amount of
recently sent and received packets in the Mobile IPv4 tunnel.

NRC-TR-2008-002 5 Copyright © 2008 Nokia

After a while, the UDP NAT mapping expires. Keep-alives
are still sent over the TCP connection to keep its mapping
alive.

5. Later, when the home agent has a packet to be sent to the
client, it sends a wake-up message over the TCP connection.
(As before, it also sends the packet using UDP encapsulation,
although it is quite likely this packet will be dropped by the
NAT since it cannot find the correct mapping.)

6. When the client receives the wake-up message, it sends a
new registration request message. This causes a new NAT
mapping to be created, and communicates this information to
the home agent (most likely the port number assigned by the
NAT has changed). The client also starts sending UDP keep-
alives again, and informs the home agent that it has left idle
mode (TCP-based wake-ups are no longer needed).

7. Eventually, the correspondent node that sent the packet in
step 5 will retransmit; as the NAT mappings are now fully up-
to-date, the packet will be received as usual. (A possible
optimization is to buffer the packet at home agent, and send it
only once the new NAT mapping is ready; this is discussed in
Section IV.D.)

Waking up can also be triggered by an outgoing packet at
the client. The procedure for updating the NAT mapping and
leaving idle mode is the same as above.

The procedure for IPsec VPNs is essentially similar, except
that the information in step 1 is carried in IKEv2 messages,
and in step 6, any authenticated message is sufficient to update
the NAT mapping information in the VPN gateway.

A. Mobile IPv4 Extension
TCP Wake-Up requires an extension to the Mobile IPv4

registration messages. The basic requirements are to (1)
determine whether the home agent supports this feature, (2) to
communicate the TCP port number and (3) a connection
identifier, and (4) to agree on a key used to secure the TCP
connection.

To take the TCP Wake-Up feature in use, the client includes
a TCP-WAKE-UP-SUPPORTED extension in the registration
request. If the home agent supports this feature, the home
agent includes a TCP-WAKE-UP extension in the registration
reply. If the home agent does not support the feature, it ignores
the client’s extension and responds as usual.

The TCP port number and connection identifier could be
either agreed implicitly (e.g., use a well-known TCP port, and
the home address as the connection identifier), or explicitly
communicated. To provide implementation flexibility, we
decided to let the home agent select these, and included them
the TCP-WAKE-UP extension in the registration reply.

The final requirement is to agree on a key to be used to
authenticate the TCP connection. The client and home agent
already share a key, the Mobile Node–Home Agent (MN–HA)
key, which is used to authenticate the registration messages.
We decided to derive a new key from this existing key. Since
the MN–HA authenticator field is usually calculated with
HMAC-MD5, we derived a new key with as HMAC-
MD5(MN–HA key, 0x00 | “TCP Wake-Up” | nonce). The
leading zero byte guarantees that we do not conflict with the
use of MN–HA key for computing the MN–HA authenticator
field, and a nonce selected by the home agent provides
freshness.

B. IKEv2 Extension
In case of IPsec, similar extensions can be added to IKEv2

[13] messages. To indicate support for TCP Wake-Up, the
client includes a TCP_WAKE_UP_SUPPORTED notification
in the IKE_AUTH request. If the gateway supports TCP
Wake-Up, it replies with a TCP_WAKE_UP notification,
which contains the TCP port number and connection
identifier.

These IKE messages are encrypted, so the key for TCP
Wake-Up is randomly generated by the gateway, and sent to
the client.

C. TCP Wake-Up Protocol
The TCP Wake-Up protocol is very simple, and there are

only three different message exchanges. The same protocol
can be used with both Mobile IPv4 and IPsec.

The “Start” message is sent by the client once it has
established the TCP connection, and contains the connection
identifier agreed on during Mobile IPv4 registration or IKE
SA establishment. The home agent/gateway uses the
connection identifier to find its local state, and replies with a
“Challenge” message, containing a random nonce used to
authenticate the client. The client completes the exchange with
“Response” message, containing a MAC calculated using the
agreed-on key and the challenge provided by the home agent.

The second possible exchange is used to enable or disable
TCP-based wake-ups; the client sends either “Enable” or
“Disable” message (consisting of a single byte), and the home
agent/gateway replies with an “Ack”. This exchange can also
be used to verify that the TCP connection is working.

The third exchange is the actual “Wake-Up” message; a
single byte sent by the home agent/gateway, which acknowl-
edged by the client.

D. Security Mechanisms
The authentication of the TCP connection between the

client and home agent/gateway deserves some explanation. In
particular, why is authentication needed at all, and why the
individual messages are not protected as well?

There are basically three different threats associated with
the TCP wake-up connection.

First, an attacker could open a TCP connection to the home
agent and pretend to be a valid client. The attacker would then
receive notifications when the client has incoming packets.
This would allow an attacker who is not otherwise able to
eavesdrop the packets to perform some kind of traffic analysis.
This threat is mitigated by requiring that the parties are
authenticated when the TCP connection is established, and the
key is agreed in a secure way.

Second, an attacker could prevent the client from waking up
when it should, causing incoming packets to be dropped by the
NAT. This attack can be carried out by attackers who are on
the path between the client and the gateway; cryptographically
protecting the wake-up messages would not change the
situation.

Third, an attacker could unnecessarily wake up the client
without a good reason, leading to unnecessary power con-
sumption (called “sleep deprivation torture” by Stajano and
Anderson [29]). This attack can also be carried out by an
attacker who is on the path between the client and the

NRC-TR-2008-002 6 Copyright © 2008 Nokia

gateway, or is otherwise able to send packets that reach the
client. In general, cryptographically protecting the wake-up
messages would not change the situation significantly, since
the client has already woken up to verify the packet.

To summarize, the authentication of the TCP connection is
intended to counter the first threat, traffic analysis by off-path
attackers. The two latter threats would not be significantly
affected by per-message cryptographic protection, so that was
not done in order to keep the protocol as simple as possible.

It could be claimed that the first threat is also quite
unrealistic, and could be mitigated by requiring that the
gateway chooses connection identifiers in an unpredictable
manner. This is to some degree true, but it was felt the
protocol looks more elegant this way.

IV. ANALYSIS
In this section, we analyze the impact of TCP Wake-Up.
Subsection A describes the keep-alive message intervals

used for this analysis, and their justification. Based on the
selected keep-alive interval, Subsection B estimates how much
energy could be saved, and Subsection C performs similar
calculations for traffic volume.

The savings in energy consumption and traffic volume do
not come without some costs: Subsection D discusses addi-
tional delay due to TCP-based wake-up, and Subsection E de-
scribes implementation considerations.

A. Keep-Alive Message Interval
Table 1, reproduced from [8], shows the default connection

state timeout values for some common NAT and firewall
products.

For the reminder of this section, we assume that UDP-based
traffic will require keep-alive messages once every 30
seconds, and TCP will require 600 seconds (10 minutes). This
is a somewhat pessimistic assumption, as some products use
significantly longer timer values. For example, NATs com-
pliant with the IETF BEHAVE working group specifications
use a default timeout of at least 124 minutes for TCP and 120
seconds for UDP [3][7].

However, reliably determining what timeout is used by the
NAT is difficult. For example, earlier versions of STUN
specification [23] included a “binding lifetime discovery” pro-
cedure; however, this was removed from the main STUN
specification, as it was found to be brittle and prone to error
[24]. Mobile IPv4 and MOBIKE [6] messages can, in some
cases, be used to detect NAT timeouts.

Most importantly, these lifetime discovery mechanisms
usually work on with NATs, not stateful firewalls.

Product TCP timeout UDP timeout
Check Point NG FP2 firewall 60 min 40 s
Cisco IOS router NAT 1440 min 300 s
Cisco PIX firewall 60 min 120 s
Juniper Netscreen firewall 30 min 60 s
Nokia IP VPN gateway 60 min 120 s
ZyXEL Prestige 660W/HW ADSL router 60 min 60 s
ZyXEL ZyWALL 70 firewall 150 min 180 s

Table 1: Default connection state timeout values for some

firewall/NAT products (reproduced from [8])

B. Energy Consumed by Keep-Alive Messages
Fig. 8 shows the estimated average power for normal

Mobile IPv4 NAT traversal (with 30-second UDP keep-alives)
and TCP Wake-Up (with 600-second TCP keep-alives), for
2G, 3G, and WLAN.

The figure shows that with the RNC configuration
measured in Section II, TCP Wake-Up would have four times
longer stand-by time in 2G, and over seven times longer stand-
by time in 3G. For WLAN, the effect would be minimal.

It should be noted that, as shown in [8], the numbers depend
heavily on RNC configuration. However, even with the most
optimistic RNC configuration described in [8] (CELL_PCH
enabled, T2 set to 2 seconds), TCP Wake-Up would still
double the stand-by time. This is clearly a huge improvement.

Normal

Normal

NormalTCP
Wake-Up

TCP
Wake-Up TCP

Wake-Up

0

50

100

150

200

250

300

350

400

2G 3G WLAN

av
er

ag
e

po
w

er
 (m

W
)

Fig. 8: Estimated power consumed by normal Mobile IPv4

NAT traversal (30-second UDP keep-alives) vs.
TCP Wake-Up (600-second TCP keep-alives).

C. Keep-Alive Message Traffic Volume
While the most important cost of keep-alive messages is

probably energy consumption, they also consume bandwidth.
In the basic Mobile IPv4 case, a keep-alive message

consists of the following fields (the reply packet sent by the
home agent is of the same size):

Field(s) Size (bytes)
Outer IPv4 header 20
UDP header 8
MIP tunnel data message header 4
Inner IPv4 header 20
ICMPv4 header 8
Echo data 0+
Total 60+

For IPsec, the packet is as follows (the gateway does not

reply to the keep-alive message):

Field(s) Size (bytes)
Outer IPv4 header 20
UDP header 8
Keep-alive payload 1
Total 29

NRC-TR-2008-002 7 Copyright © 2008 Nokia

For TCP Wake-Up (reply packet is similar size; the final ACK
from client does not have any data)

Field(s) Size (bytes)
Outer IPv4 header 20
TCP header 20
TCP options and padding 0+
Data 1
Total 41+

Fig. 9 shows the total keep-alive traffic volume for a home

agent/gateway with 10,000 clients. For Mobile IPv4, TCP
Wake-Up reduces the daily traffic volume from 3.5 GB to 180
MB. However, while the decrease—over 3 GB—sounds large,
it is probably small compared to the total traffic volume of a
home agent with 10,000 clients.

Normal

Normal

TCP Wake-Up TCP Wake-Up

0

500

1000

1500

2000

2500

3000

3500

4000

Mobile IPv4 IPsec

tr
af

fic
 v

ol
um

e
(M

B
/d

ay
)

Fig. 9: Keep-alive traffic volume (per day) for a

home agent/gateway with 10,000 clients.

D. Wake-Up Delay
In the design considered so far, the home agent/gateway

never buffers data packets directed to the client. This means
that the first data packet after wake-up is usually dropped by
the NAT, since the necessary state has not been established
yet. This is not very serious, since the host trying to contact
the client has to accommodate for packet loss anyway, and
will eventually retransmit.

However, waiting for the host to retransmit does result in
some extra delay. The significance of this delay depends on
the applications used. For example, email end-to-end delivery
time is at least tens of seconds, so small additional delay is
inconsequential. For voice-over-IP call establishment, the
delay is directly visible to the calling party, so optimizing it is
more important.

A possible optimization would be for the gateway to buffer
the packet, and transmit it once the new NAT mapping has
been established. This would reduce the extra delay due to
TCP Wake-Up to roughly 1 round-trip time (assuming that the
delay is mostly due to round-trip time, and not, e.g.,
processing time, is probably reasonable in 2G/3G). However,
this would increase implementation complexity of the IP
forwarding path.

E. Implementation Considerations
TCP Wake-Up introduces at least one potential scalability

concern for home agent/gateway implementations. Histor-

ically, TCP/IP stacks were not designed to handle a very large
number of concurrent TCP connections (see e.g. [14]). With
TCP Wake-Up, a large home agent or VPN gateway could
potentially require tens of thousands of TCP connections.

This question has been investigated by Shemyak and
Vehmanen [25] in the context of SIP servers; their results
show that scalability depends significantly on implementation
details, but when proper APIs are used, even a low-end Linux
box can handle 100,000 simultaneous TCP connections.

However, using TCP may still complicate implementation
of high-availability features, such as transparent synchro-
nization with a “stand-by” backup node.

V. ALTERNATIVE SOLUTIONS
In some sense, TCP Wake-Up is a “patch solution” that

would not be needed in an ideal networking system. This
section discusses alternative solutions to the problem of keep-
alive energy consumption.

The obvious alternatives, reducing the energy consumed by
a single keep-alive message, and using longer NAT/firewall
timeouts, are discussed in Subsections A and B, respectively.
Subsection C describes the use of TCP-based protocols in
general, and Subsection D examines approaches that avoid the
need for keep-alives completely by sending wake-up messages
“out-of-band” (not going through the NAT/firewall).

A. Reducing the Cost of Single Keep-Alive
The results of Section II and [8] show that the energy

consumption of a single keep-alive exchange depends heavily
on the details of the particular radio technology and its
parameters. While energy consumption has been considered
in the design of these radio technologies, it has focused largely
on idle mode (with no traffic at all) and voice calls, and
regular “background traffic”, such as keep-alives, has received
little attention.

Some HSDPA features, such as HS-SCCH-less operation
and enhanced CELL_FACH (see Peisa et al. [20]) could be
expected to eventually decrease keep-alive energy consump-
tion. These features decrease signaling overhead and latency,
and thus enable using shorter RRC timer values without
sacrificing user experience. However, the measurements in
Section II show that these savings are not necessarily realized
in current HSDPA networks.

Energy consumption of Wireless LANs has also received
significant attention from researchers (see e.g. [21] and its
references); however, a more detailed discussion is beyond the
scope of this paper.

B. Increase Keep-alive Interval
Haverinen et al. [8] and the IETF BEHAVE working group

specifications [3][7] recommend using relatively long
timeouts in NATs and firewalls, reducing the need for keep-
alive messages. While such recommendations can improve the
situation in the long term, in short term the NATs are often
beyond the control of, e.g., consumers and enterprises wanting
to use always-on applications with mobile phones. Also, as
noted in Section IV.A, reliably determining the timeout
currently in use is not simple; recent work in this area includes

NRC-TR-2008-002 8 Copyright © 2008 Nokia

the Self-Address Fixing Evolution (SAFE) proposal in
IETF [12].

Middlebox signaling protocols (see [5] for one recent
survey) would allow the client to explicitly request a longer
timeout for a particular traffic flow, but such protocols have
not seen widespread deployment, especially in 2G/3G net-
works.

C. Use TCP-based Protocols
One obvious solution for frequent UDP keep-alives is, of

course, to use TCP instead. This could mean, for example,
handling connection disruptions (such as IP address changes
due to mobility) in the application layer—which many
applications already do—and using SSL/TLS for security,
either end-to-end or with SSL VPNs.

It is also good to note that some IPsec products do support
TCP encapsulation for IPsec (e.g., “Visitor mode” in Check
Point SecureClient [4]), and that some SSL VPN products,
despite their name, actually do not use SSL or TCP for all
traffic [27]. Thus, the performance differences between these
approaches are not necessarily obvious; for example, Snyder
[27] discovered that running voice-over-IP traffic over TCP
does not necessarily degrade call quality.

D. Out-of-Band Wake-Up
A device with multiple network interfaces can also save

energy by completely powering off some interfaces, and
possibly leverage energy consumption differences between
radio technologies. For example, Shih et al. [26] propose
including a secondary low-power radio interface, which is
used to wake up the client, allowing switching off the main
Wireless LAN interface. Agarwal et al. [1] propose a similar
scheme using Bluetooth as the secondary radio.

Other proposals use non-TCP/IP based protocols to
completely remove the need for NAT/firewall keep-alive
messages. For example, a number of protocols defined by
Open Mobile Alliance (OMA), such Multimedia Messaging
Service (MMS) and Device Management (DM), use text
messages (SMS) to “wake up” the phone. Agarwal et al. [2]
GSM caller ID signaling as the wake-up channel. However,
using non-TCP/IP-based protocols complicates the system,
and may require operator involvement.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have analyzed the energy consumption of

keep-alive messages on a mobile phone with 2G, 3G, HSDPA
and Wireless LAN networks. The results show that “always-
on” applications with long-lived persistent connections cannot
be based solely on UDP if they aim to be usable in current
2G/3G networks.

To allow Mobile IPv4 and IPsec VPNs to be used in such
environments, we introduce TCP Wake-Up, an extension to
Mobile IPv4 and IPsec NAT traversal mechanisms which
avoids the need for UDP keep-alives when the connection is
idle. The analysis in Section IV shows that TCP Wake-Up
could extend the battery lifetime by a factor of 2 to 7.

TCP Wake-Up requires changes only in the client and home
agent/VPN gateway, but not in the network elements (such as
radio access networks, NATs, and firewalls) between them,

and thus it can be deployed by e.g. an enterprise. This
differentiates TCP Wake-Up from many other solutions dis-
cussed in Section V.

However, improvements in other areas—such as HSDPA
energy consumption with improved signaling procedures—
could eventually reduce the improvement offered by TCP
Wake-Up. Future studies on these topics are therefore rec-
ommended. Future work could also include extending the TCP
Wake-Up concept to other protocols that include IP-over-UDP
tunneling, such as Dual-Stack Mobile IPv6 [28] and Teredo
[10].

ACKNOWLEDGMENT
The authors would like to thank N. Asokan, Dan Forsberg,

and Henry Haverinen for their valuable comments and
suggestions, and Antti Miettinen and Gerard Bosch Creus for
their help with the energy consumption measurements.

After we had completed the TCP Wake-Up specification,
we discovered that something similar—using a “back-up”
TCP connection between IPsec VPN client and gateway—had
been proposed by David Mason already in 2001 [16]. How-
ever, as far as we know, this proposal never went beyond one
email on the IETF IPsec working group mailing list.

REFERENCES
[1] Y. Agarwal, C. Schurgers, and R. Gupta, “Dynamic Power Management

Using On Demand Paging for Networked Embedded Systems”, Proc.
Asia South Pacific Design Automation Conference, 2005.

[2] Y. Agarwal et al., “Wireless Wakeups Revisited: Energy Management
for VoIP of Wi-Fi Smartphones”, Proc. ACM MobiSys, 2007.

[3] F. Audet and C. Jennings, “Network Address Translation (NAT) Behav-
ioral Requirements for Unicast UDP”, RFC 4787, 2007.

[4] Check Point, “VPN-1 SecureClient Datasheet”, 2007.
[5] L. Eggert et al., “A Survey of Protocols to Control Network Address

Translators and Firewalls”, work in progress (draft-eggert-middlebox-
control-survey-01), 2007.

[6] P. Eronen, “IKEv2 Mobility and Multihoming Protocol (MOBIKE)”,
RFC 4555, 2006.

[7] S. Guha et al., “NAT Behavioral Requirements for TCP”, work in prog-
ress (draft-ietf-behave-tcp-07), 2007.

[8] H. Haverinen, J. Siren, and P. Eronen, “Energy Consumption of Always-
On Applications in WCDMA Networks”, Proc. IEEE VTC 2007-Spring.

[9] O. Honda et al., “Understanding TCP over TCP: effects of TCP
tunneling on end-to-end throughput and latency”, Proc. SPIE –Volume
6011 Performance, Quality of Service, and Control of Next-Generation
Communication and Sensor Networks III, M. Atiquzzaman, S.I.
Balandin (eds.), 2005.

[10] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, RFC 4380, 2006.

[11] A. Huttunen et al., “UDP Encapsulation of IPsec ESP Packets”, RFC
3948, 2005

[12] IETF, “Proceedings of the Seventieth Internet Engineering Task Force,
Self-Address Fixing Evolution (safe)”, http://www3.ietf.org/
proceedings/07dec/safe.html, 2007.

[13] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol”, RFC 4306,
2005.

[14] D. Kegel, “The C10K problem”, http://www.kegel.com/c10k.html,
2006.

[15] H. Levkowetz and S. Vaarala, “Mobile IP Traversal of Network Address
Translation (NAT) Devices”, RFC 3519, 2003.

[16] D. Mason, “RE: I-D ACTION:draft-ietf-ipsec-udp-encaps-00.txt”,
message on ipsec@lists.tislabs.com mailing list, July 12, 2001,
http://www.sandelman.ottawa.on.ca/ipsec/2001/07/msg00066.html

[17] Nokia, “Device Details: Nokia E65”, http://www.forum.nokia.com/
devices/E65, 2007.

[18] Nokia, “Device Details: Nokia N95”, http://www.forum.nokia.com/
devices/N95, 2007.

NRC-TR-2008-002 9 Copyright © 2008 Nokia

[19] Nokia, “Recommendations for Reducing Power Consumption of
Always-On Applications”, http://www.forum.nokia.com/main/resources/
development_process/power_management/, 2007.

[20] J. Peisa et al., “High Speed Packet Access Evolution – Concept and
Technologies”, Proc. IEEE VTC 2007-Spring.

[21] X. Pérez-Costa, D. Camps-Mura, and A. Vidala, “On distributed power
saving mechanisms of wireless LANs 802.11e U-APSD vs 802.11
power save mode", Computer Networks, 51(9):2326–2344, 2007.

[22] A. Rahmati and L. Zhong, “Context-for-Wireless: Context-Sensitive
Energy-Efficient Wireless Data Transfer”, Proc. ACM MobiSys, 2007.

[23] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN –
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs)”, RFC 3489, 2003.

[24] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for (NAT) (STUN)”, work in progress (draft-ietf-behave-
rfc3489bis-13), 2007.

[25] K. Shemyak and K. Vehmanen, “Scalability of TCP Servers Handling
Persistent Connections”, Proc. 6th International Conference on Net-
working, 2007.

[26] E. Shih, P. Bahl, and M.J. Sinclair, “Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices”, Proc.
ACM MobiCom, 2002.

[27] J. Snyder, “Test shows VoIP call quality can improve with SSL VPN
links”, Network World, http://www.networkworld.com/reviews/2006/
022006-ssl-voip-test.html, 2006.

[28] H. Soliman, “Mobile IPv6 support for dual stack Hosts and Routers
(DSMIPv6)”, work in progress (draft-ietf-mip6-nemo-v4traversal-06),
2007.

[29] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks”, 7th International Workshop on
Security Protocols, LNCS vol. 1796, 1999.

[30] O. Titz, “Why TCP Over TCP Is A Bad Idea”, http://sites.inka.de/
~W1011/devel/tcp-tcp.html, 2001.

NRC-TR-2008-002 10 Copyright © 2008 Nokia

